

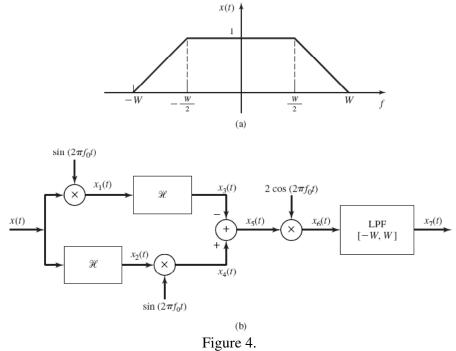
P1.- How can you recover a band-pass signal from its low-pass equivalent? Prove it mathematically.

P2.- Use a phasors diagram to obtain the expressions for the in-phase and quadrature components $(x_i(t) \text{ and } x_q(t))$; and the envelope and instantaneous phase $(A(t) \text{ and } \phi(t))$ of the band-pass signal:

$$x(t) = x_1(t) \cdot \cos(w_0 t) + x_2(t) \cdot \cos(w_0 t + \alpha)$$

P3.- Repeat the previous exercise for the signal: $x(t) = x_1(t) \cos((w_0 - w_1)t) + x_2(t) \cos((w_0 + w_1)t)$

P4.- A low-pass signal x(t) whose Fourier transform is shown in Figure 4(a) passes through the system shown in Figure 4(b) (where *H* blocks represent Hilbert transforms). Assuming that $W \ll f_0$, represent in frequency the signals obtained at each point of the system.



P5.- Suppose a band-pass signal x(t) and a low-pass signal m(t) whose spectra do not overlap. Prove that the Hilbert transform of c(t) = m(t)x(t) equals $m(t)\hat{x}(t)$.

P6.- Suppose a low-pass signal $m(t) = \operatorname{sinc}^2(t)$ and a band-pass signal $x(t) = m(t)\cos(2\pi f_0 t) - \hat{m}(t)\sin(2\pi f_0 t)$:

- a) Obtain the analytical signal associated to x(t) and low-pass equivalent of x(t).
- b) Obtain and represent the Fourier transform of the signal x(t). (Remember that $TF\{m(t)\} = \Lambda(f)$.)
- c) Repeat the two previous sections with $x(t) = m(t)\cos(2\pi f_0 t) + \hat{m}(t)\sin(2\pi f_0 t)$.

P7. Assuming a center frequency $f_c = 1200$ Hz, obtain the low-pass equivalent and the in-phase and quadrature components of the signal:

$$X(f) = \begin{cases} 1 & 900Hz \le |f| < 1300Hz \\ 0 & resto \end{cases}$$

P8.- Suppose the next signals:

- a) Obtain the analytical signal associated to x(t) and its low-pass equivalent.
- b) Obtain the signal $\hat{y}(t)$ (i.e., the Hilbert Transform of y(t)). Obtain and represent the $TF\{\hat{y}(t)\}$.
- c) Use a phasors diagram to obtain the expressions for the in-phase and quadrature components $(p_i(t) \text{ and } p_q(t))$; and the envelope and instantaneous phase $(A(t) \text{ and } \phi(t))$ of the signal p(t).

Note:
$$\frac{\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)}{\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)}$$

- **P9.-** Assuming a center frequency $f_c = 1200$ Hz and the signal: $X(f) = \begin{cases} 1 & 1100$ Hz $\leq |f| < 1200$ Hz 0.5 & 1200Hz $\leq |f| < 1350$ Hz 0 & resto
 - a) Obtain the low-pass equivalent.
 - b) Obtain the in-phase and quadrature components $(x_i(t) \text{ and } x_q(t))$.
 - c) Obtain the signal $\hat{x}_i(t)$ (i.e., the Hilbert transform of the signal $x_i(t)$).

Nota:
$$\prod \left(\frac{f}{F} \right) \xrightarrow{TF^{-1}} F \cdot \operatorname{sinc}(Ft)$$

P10.- A signal x(t) with Fourier transform $X(f) = \prod \left(\frac{f}{1000}\right)$ passes through the system shown in Figure 10 (where *H* blocks represent Hilbert transforms). Assuming that W = 1KHz and $f_0 = 10$ KHz:

- a) Obtain (in time and frequency; only up to the signal $x_5(t)$) and represent in frequency the signals obtained at each point of the system.
- b) Obtain the analytical signal associated to $x_5(t)$ and its low-pass equivalent.

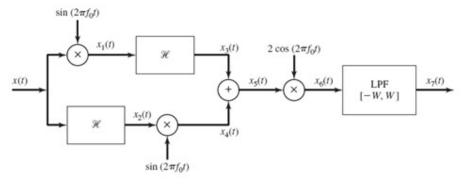


Figure 10.

Note: You can leave the solutions of this problem in terms of x(t) and $TH\{x(t)\}$.

P11.- Suppose the next signals:

- a) Use a phasors diagram to obtain the expressions for the in-phase and quadrature components $(p_i(t) \text{ and } p_q(t))$; and the envelope and instantaneous phase $(A(t) \text{ and } \phi(t))$ of the signal p(t).
- b) Obtain the analytical signal associated to x(t) and its low-pass equivalent.
- c) Obtain and represent the $TF\{\hat{g}(t)\}$ (i.e., the Fourier transform of the signal g(t)).
- d) Obtain the signal $\hat{y}(t)$ (i.e., the Hilbert transform of the signal y(t)). Obtain and represent the $TF\{\hat{y}(t)\}$.

Note:

$$sin(A + B) = sin(A) cos(B) + cos(A) sin(B)$$

$$cos(A + B) = cos(A) cos(B) - sin(A) sin(B)$$